Chemical Equilibrium and hydrogen.

- 1. Which of the following is an irreversible teaction?
 - Va. Neutralisation of strong acid Vs strong base.
 - b. Neutralisation of weak acid Vs strong base
 - c. Neutralisation of strong acid Vs weak base
 - d. Neutralisation of weak acid vs weak base.
- 2. For the reaction $A + 2B \rightleftharpoons 3C$, the equilibrium Constant Kc is given by

a. $\frac{[A][B]^2}{[C]^3}$ b. $\frac{[C]^3}{[A][B]^2}$ c. $\frac{3[C]^3}{[A]^2[B]^2}$ d. $\frac{[C]^3}{[A] + [B]^2}$

- 3. For the dissociation of HI, the equilibrium Constant is found to be 0.25. What would be the equilibrium Constant for the formation of HI?

 a. 4

 b. 3

 c. 2

 d. 1.
- 4. For an exothermic reaction,
 - a. K is independent of temperature.
 - b. k increases as temperature increases.
- V. K decreases as temperature increases.
 - d. K varies with addition of reactants.

- 5. For the teaction N2 + 3H2 = 2NH3, the value of Kc depends upon.
 - a. Initial Conc. of reactants
 - b. Pressure . c. temperature d. all of these
- 6. For an endothermic reaction @ equilibrium the formation of product can be increased by
- à inerasing temperature b. Lowering temperature
- c. Keeping temperature Constant
- d. decreasing the Conc. of reactant.
- 7. For the reaction, nA + mB -> products, in accordance to Law of mass Action.
- a. Rate = $K[A]^n + [B]^M$
- b. Rate = K[A+B]n+m
- C. Rate = K + (A) n (B) m)
 - Vd. Rate = K[A]^[B]M.
- 8. The relation between kp and kc for $N_2(g) + 3H_2(g) \stackrel{>}{=} 2NH_3(g)$ is
 - a. kp = kc b. kp = kc(RT)
 - $V_{C.} \ kp = k_{C}(RT)^{-2}$ d. $kp = k_{C}(RT)$
- 9. The equilibrium constant for the reaction $250_{2(g)} + N0_{2(g)} = 250_{3(g)} + N0_{2(g)}$ is 16. What will be the equilibrium Constant for the reaction $250_2 + 2N0_2 = 250_3 + 2N0$
 - a. 16 b 32 °C. 256 d.4